
CertiK Assessed on Aug 12th, 2025

Moonshot Magax
Security Assessment

Executive Summary

Vulnerability Summary

1 Centralization 1 Timelock
Centralization findings highlight privileged roles &

functions and their capabilities, or instances where the

project takes custody of users’ assets.

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

0 Major
Major risks may include logical errors that, under specific

circumstances, could result in fund losses or loss of

project control.

0 Medium
Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

1 Minor 1 Resolved

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

3 Informational 3 Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY MOONSHOT MAGAX

CertiK Assessed on Aug 12th, 2025

Moonshot Magax

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

Vesting

ECOSYSTEM

Polygon (MATIC)

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 08/12/2025

KEY COMPONENTS

N/A

CODEBASE
base

update_20250812

View All in Codebase Page

COMMITS
0x777fd819dc63418c648c1b9437d0f8d8211b3c08

a147929194c6c93b93fdeee82e39b8925787ba93

View All in Codebase Page

5
Total Findings

4
Resolved

1
Timelock

0
Partially Resolved

0
Acknowledged

0
Declined

https://amoy.polygonscan.com/address/0x777fd819dc63418c648c1b9437d0f8d8211b3c08#code
https://github.com/moonShotMAGAX1/magax/commit/a147929194c6c93b93fdeee82e39b8925787ba93
https://amoy.polygonscan.com/address/0x777fd819dc63418c648c1b9437d0f8d8211b3c08#code
https://github.com/moonShotMAGAX1/magax/commit/a147929194c6c93b93fdeee82e39b8925787ba93

TABLE OF CONTENTS MOONSHOT MAGAX

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

MOM-04 : Centralization Risks

MOM-05 : Missing Finalisation Check in Stage Activation Function

MOM-06 : Too many digits

MOM-07 : Missing Emit Events

MOM-08 : Misleading Error Usage in `fallback()` Function

Optimizations

MOM-01 : User-Defined Getters

MOM-02 : Redundant Unused Constant `DEFAULT_PROMO_BONUS_BPS`

MOM-03 : Redundant Emergency Withdrawal Function Due to Disabled Ether Reception

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS MOONSHOT MAGAX

CODEBASE MOONSHOT MAGAX

Repository

base

update_20250812

Commit

0x777fd819dc63418c648c1b9437d0f8d8211b3c08

a147929194c6c93b93fdeee82e39b8925787ba93

CODEBASE MOONSHOT MAGAX

https://amoy.polygonscan.com/address/0x777fd819dc63418c648c1b9437d0f8d8211b3c08#code
https://github.com/moonShotMAGAX1/magax/commit/a147929194c6c93b93fdeee82e39b8925787ba93
https://amoy.polygonscan.com/address/0x777fd819dc63418c648c1b9437d0f8d8211b3c08#code
https://github.com/moonShotMAGAX1/magax/commit/a147929194c6c93b93fdeee82e39b8925787ba93

AUDIT SCOPE MOONSHOT MAGAX

4 files audited 1 file with Resolved findings 3 files without findings

ID Repo File SHA256 Checksum

PSO amoy contracts/PreSaleOnChain.sol
6bd2bf6153014d9b94dab6ae1b22102f

bab0d7214b85dacdaa5a4921c4c2c903

PSC moonShotMAGAX1/magax contracts/PreSaleOnChain.sol
b7eedfcd6e51cdb959c8f688caa53b2fd

c9ae1626f316442f0cf816a3e75ff71

PSS moonShotMAGAX1/magax contracts/PreSaleOnChain.sol
dc4767f7fe757a5b6cf3205f3d4a91aa63

b277a02f4e1e78861bb341cbdf0f31

PSM moonShotMAGAX1/magax contracts/PreSaleOnChain.sol
8e4eb14f3cfc54a476fc043744cfc52c63

a2a83fb0550ffe238be0ae7c6a2d4f

AUDIT SCOPE MOONSHOT MAGAX

APPROACH & METHODS MOONSHOT MAGAX

This report has been prepared for Moonshot Magax to discover issues and vulnerabilities in the source code of the

Moonshot Magax project as well as any contract dependencies that were not part of an officially recognized library. A

comprehensive examination has been performed, utilizing Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS MOONSHOT MAGAX

FINDINGS MOONSHOT MAGAX

This report has been prepared to discover issues and vulnerabilities for Moonshot Magax. Through this audit, we have

uncovered 5 issues ranging from different severity levels. Utilizing the techniques of Static Analysis & Manual Review to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

MOM-04 Centralization Risks Centralization Centralization 48h Timelock

MOM-05
Missing Finalisation Check In Stage Activation

Function
Logical Issue Minor Resolved

MOM-06 Too Many Digits
Magic

Numbers
Informational Resolved

MOM-07 Missing Emit Events Coding Style Informational Resolved

MOM-08
Misleading Error Usage In fallback()

Function
Logical Issue Informational Resolved

FINDINGS MOONSHOT MAGAX

5
Total Findings

0
Critical

1
Centralization

0
Major

0
Medium

1
Minor

3
Informational

MOM-04 CENTRALIZATION RISKS

Category Severity Location Status

Centralization Centralization
contracts/PreSaleOnChain.sol (base): 161, 277, 472,

497, 554, 558, 562, 568, 574, 586, 646
48h Timelock

Description

In the contract MAGAXPresaleReceipts , the roles DEFAULT_ADMIN_ROLE and RECORDER_ROLE have authority over the

functions shown below, creating potential centralization risks:

1. recordPurchase(): Controlled by the RECORDER_ROLE , allowing potential manipulation of purchase records without

additional oversight.

2. recordPurchaseWithReferral(): Also controlled by the RECORDER_ROLE , which could lead to biased referral purchases.

3. configureStage(): Managed by the DEFAULT_ADMIN_ROLE , providing the admin with unchecked control over stage

configuration, including token pricing and allocation.

4. activateStage(): Controlled by the DEFAULT_ADMIN_ROLE , allowing for manipulation of token sale stages.

5. finalise(): The DEFAULT_ADMIN_ROLE has the authority to finalize the presale.

6. setMaxPromoBps(): Controlled by the DEFAULT_ADMIN_ROLE , giving the admin the ability to adjust promotional bonus

limits.

7. emergencyTokenWithdraw(): The DEFAULT_ADMIN_ROLE has exclusive access to withdraw tokens from the contract,

posing risks if abused.

8. emergencyEthWithdraw(): Controlled by the DEFAULT_ADMIN_ROLE , enabling the admin to withdraw ETH from the

contract

9. recordPurchaseWithPromo(): Managed by the RECORDER_ROLE , which could lead to biased bonus distributions if not

properly monitored.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

MOM-04 MOONSHOT MAGAX

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[Moonshot Magax, 08/11/2025]: The team heeded the advice and resolved the issue by adding timelock in the commit.

MOM-04 MOONSHOT MAGAX

https://github.com/moonShotMAGAX1/magax/commit/a147929194c6c93b93fdeee82e39b8925787ba93

MOM-05 MISSING FINALISATION CHECK IN STAGE ACTIVATION
FUNCTION

Category Severity Location Status

Logical Issue Minor contracts/PreSaleOnChain.sol (base): 497~514 Resolved

Description

The activateStage() function lacks a check for the finalised flag, allowing an administrator to activate new presale

stages even after the presale has been finalized. This contradicts the intended logic enforced elsewhere in the contract,

where purchase related actions are blocked once finalised is set to true . Without this restriction, a finalized presale

could appear reactivated, potentially leading to inconsistent state assumptions or misuse by interfaces or off chain systems

relying on the finalization state.

Recommendation

We recommend adding a require(!finalised, ...) check to the activateStage() function to prevent stage activation

after the presale has been finalized.

Alleviation

[CertiK, 08/07/2025]: A check was added to revert the transaction with a PresaleFinalised error if the presale has already

been finalized. The change has been reflected in the commit.

MOM-05 MOONSHOT MAGAX

https://github.com/moonShotMAGAX1/magax/commit/6a4d6dcece7b7120b2737137c591f3a88a84f7ba

MOM-06 TOO MANY DIGITS

Category Severity Location Status

Magic Numbers Informational contracts/PreSaleOnChain.sol (base): 28~761 Resolved

Description

Literals with many digits are difficult to read and review.

35 uint128 public constant MAX_TOTAL_USDT = 10000000 * 1e6;

// 10M USDT total presale limit

34 uint128 public constant MAX_PURCHASE_USDT = 1000000 * 1e6;

// 1M USDT max per purchase

Recommendation

We advise to use underscores _ in numeric literals to improve readability.

Alleviation

[CertiK, 08/07/2025]: Numeric literals in the code were reformatted using underscore separators for better readability, such

as changing 1000000 to 1_000_000 , without altering their actual values. The change has been reflected in the commit.

MOM-06 MOONSHOT MAGAX

https://github.com/moonShotMAGAX1/magax/commit/6a4d6dcece7b7120b2737137c591f3a88a84f7ba

MOM-07 MISSING EMIT EVENTS

Category Severity Location Status

Coding Style Informational contracts/PreSaleOnChain.sol (base): 568 Resolved

Description

There should always be events emitted in sensitive functions that are controlled by centralization roles.

Recommendation

It is recommended to emit events in sensitive functions that are controlled by centralization roles.

Alleviation

[CertiK, 08/07/2025]: An event emission was added to log changes to the maximum promo basis points by emitting

MaxPromoBpsUpdated() . The change has been reflected in the commit.

MOM-07 MOONSHOT MAGAX

https://github.com/moonShotMAGAX1/magax/commit/6a4d6dcece7b7120b2737137c591f3a88a84f7ba

MOM-08 MISLEADING ERROR USAGE IN fallback() FUNCTION

Category Severity Location Status

Logical Issue Informational contracts/PreSaleOnChain.sol (base): 604~606 Resolved

Description

Using the same custom error EthNotAccepted() for both the receive() and fallback() functions may lead to

confusion during debugging or contract interaction, as these functions serve distinct purposes. While receive() handles

plain Ether transfers, fallback() is triggered when calldata is present or no matching function is found. Reverting with

EthNotAccepted() in fallback() suggests the issue is Ether related, when in fact the call might be an unsupported function

invocation. A more appropriate error like FallbackNotAllowed() would provide clearer intent and better separation of

concerns.

Recommendation

We recommend replacing the EthNotAccepted() error in the fallback() function with a more descriptive error such as

FallbackNotAllowed() to accurately convey the reason for the revert.

Alleviation

[CertiK, 08/07/2025]: The error EthNotAccepted was replaced with FallbackNotAllowed . The change has been reflected

in the commit.

MOM-08 MOONSHOT MAGAX

https://github.com/moonShotMAGAX1/magax/commit/6a4d6dcece7b7120b2737137c591f3a88a84f7ba

OPTIMIZATIONS MOONSHOT MAGAX

ID Title Category Severity Status

MOM-01 User-Defined Getters
Gas

Optimization
Optimization Resolved

MOM-02
Redundant Unused Constant

DEFAULT_PROMO_BONUS_BPS

Code

Optimization
Optimization Resolved

MOM-03
Redundant Emergency Withdrawal Function Due To

Disabled Ether Reception

Code

Optimization
Optimization Resolved

OPTIMIZATIONS MOONSHOT MAGAX

https://acc.audit.certikpowered.info/project/74a6ee80-6d25-11f0-a6d8-815f4f2d21ea/report/new?fid=1754184713740
https://acc.audit.certikpowered.info/project/74a6ee80-6d25-11f0-a6d8-815f4f2d21ea/report/new?fid=1754403717904
https://acc.audit.certikpowered.info/project/74a6ee80-6d25-11f0-a6d8-815f4f2d21ea/report/new?fid=1754405393162

MOM-01 USER-DEFINED GETTERS

Category Severity Location Status

Gas Optimization Optimization contracts/PreSaleOnChain.sol (base): 414~416, 624~626 Resolved

Description

The functions getReceipts() and getUserReferrer() are redundant as they simply return the values stored in the

userReceipts and userReferrer mappings, respectively, without adding any additional logic. In fact, these functions are

effectively the same as the automatically generated getter functions for public state variables, which already allow direct

access to the mappings. This results in unnecessary gas costs for function calls when the mappings can be accessed

directly, thus making these functions redundant and inefficient.

Recommendation

We recommend removing the redundant getter functions and accessing the userReceipts and userReferrer mappings

directly to reduce unnecessary gas costs.

Alleviation

[CertiK, 08/07/2025]: The functions getReceipts() and getUserReferrer() were removed. The change has been

reflected in the commit.

MOM-01 MOONSHOT MAGAX

https://github.com/moonShotMAGAX1/magax/commit/6a4d6dcece7b7120b2737137c591f3a88a84f7ba

MOM-02 REDUNDANT UNUSED CONSTANT
DEFAULT_PROMO_BONUS_BPS

Category Severity Location Status

Code Optimization Optimization contracts/PreSaleOnChain.sol (base): 44 Resolved

Description

The constant DEFAULT_PROMO_BONUS_BPS is declared but never used anywhere in the contract, making it redundant. This

unused constant adds unnecessary clutter to the code and could potentially confuse developers or auditors, as it seems to

be intended for a purpose that is not being utilized. Removing it would improve code clarity and reduce potential

maintenance issues.

Recommendation

We recommend removing the unused constant DEFAULT_PROMO_BONUS_BPS to improve code clarity and reduce

unnecessary clutter.

Alleviation

[CertiK, 08/07/2025]: The constant declaration DEFAULT_PROMO_BONUS_BPS was removed. The change has been reflected

in the commit.

MOM-02 MOONSHOT MAGAX

https://github.com/moonShotMAGAX1/magax/commit/6a4d6dcece7b7120b2737137c591f3a88a84f7ba

MOM-03 REDUNDANT EMERGENCY WITHDRAWAL FUNCTION
DUE TO DISABLED ETHER RECEPTION

Category Severity Location Status

Code Optimization Optimization contracts/PreSaleOnChain.sol (base): 586~598 Resolved

Description

The emergencyEthWithdraw() function is redundant since the contract explicitly rejects all incoming Ether transfers via the

receive() function, which reverts any such attempts. With no other payable functions or mechanisms for receiving Ether,

the contract's balance will always remain zero, rendering this withdrawal logic unreachable and unnecessary. Keeping

unused emergency functions may increase code complexity and could mislead maintainers about potential fund handling

capabilities.

Recommendation

We recommend removing the emergencyEthWithdraw() function to reduce code complexity and avoid confusion, as the

contract does not accept Ether under any circumstances.

Alleviation

[CertiK, 08/07/2025]: The function emergencyEthWithdraw() and its corresponding event declaration

EmergencyEthWithdraw() were removed. The change has been reflected in the commit.

MOM-03 MOONSHOT MAGAX

https://github.com/moonShotMAGAX1/magax/commit/6a4d6dcece7b7120b2737137c591f3a88a84f7ba

FORMAL VERIFICATION MOONSHOT MAGAX

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied formal verification to prove

that important functions in the smart contracts adhere to their expected behaviors.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of contracts derived from AccessControl v4.4

We verified properties of the public interface of contracts that provide an AccessControl-v4.4 compatible API. This involves:

The hasRole function, which returns true if an account has been granted a specific role .

The getRoleAdmin function, which returns the admin role that controls a specific role .

The grantRole and revokeRole functions, which are used for granting a role to an account and revoking a role

from an account , respectively.

The renounceRole function, which allows the calling account to revoke a role from itself.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

accesscontrol-grantrole-correct-role-granting grantRole Correctly Grants Role

accesscontrol-revokerole-correct-role-revoking revokeRole Correctly Revokes Role

accesscontrol-hasrole-change-state hasRole Function Does Not Change State

accesscontrol-default-admin-role AccessControl Default Admin Role Invariance

accesscontrol-renouncerole-revert-not-sender
renounceRole Reverts When Caller Is Not the Confirmation

Address

accesscontrol-hasrole-succeed-always hasRole Function Always Succeeds

accesscontrol-getroleadmin-succeed-always getRoleAdmin Function Always Succeeds

accesscontrol-renouncerole-succeed-role-renouncing renounceRole Successfully Renounces Role

accesscontrol-getroleadmin-change-state getRoleAdmin Function Does Not Change State

Verification Results

FORMAL VERIFICATION MOONSHOT MAGAX

For the following contracts, formal verification established that each of the properties that were in scope of this audit (see

scope) are valid:

Detailed Results For Contract MAGAXPresaleReceipts (contracts/PreSaleOnChain.sol) In Commit
a147929194c6c93b93fdeee82e39b8925787ba93

Verification of contracts derived from AccessControl v4.4

Detailed Results for Function grantRole

Property Name Final Result Remarks

accesscontrol-grantrole-correct-role-granting True

Detailed Results for Function revokeRole

Property Name Final Result Remarks

accesscontrol-revokerole-correct-role-revoking True

Detailed Results for Function hasRole

Property Name Final Result Remarks

accesscontrol-hasrole-change-state True

accesscontrol-hasrole-succeed-always True

Detailed Results for Function DEFAULT_ADMIN_ROLE

Property Name Final Result Remarks

accesscontrol-default-admin-role True

Detailed Results for Function renounceRole

Property Name Final Result Remarks

accesscontrol-renouncerole-revert-not-sender True

accesscontrol-renouncerole-succeed-role-renouncing True

FORMAL VERIFICATION MOONSHOT MAGAX

Detailed Results for Function getRoleAdmin

Property Name Final Result Remarks

accesscontrol-getroleadmin-succeed-always True

accesscontrol-getroleadmin-change-state True

Detailed Results For Contract MAGAXPresaleReceipts (contracts/PreSaleOnChain.sol) In Commit
e11f1a4907ab28d56a97d3ec9c5069678f8647d4

Verification of contracts derived from AccessControl v4.4

Detailed Results for Function renounceRole

Property Name Final Result Remarks

accesscontrol-renouncerole-revert-not-sender True

accesscontrol-renouncerole-succeed-role-renouncing True

Detailed Results for Function getRoleAdmin

Property Name Final Result Remarks

accesscontrol-getroleadmin-succeed-always True

accesscontrol-getroleadmin-change-state True

Detailed Results for Function hasRole

Property Name Final Result Remarks

accesscontrol-hasrole-succeed-always True

accesscontrol-hasrole-change-state True

Detailed Results for Function DEFAULT_ADMIN_ROLE

Property Name Final Result Remarks

accesscontrol-default-admin-role True

FORMAL VERIFICATION MOONSHOT MAGAX

Detailed Results for Function revokeRole

Property Name Final Result Remarks

accesscontrol-revokerole-correct-role-revoking True

Detailed Results for Function grantRole

Property Name Final Result Remarks

accesscontrol-grantrole-correct-role-granting True

Detailed Results For Contract MAGAXPresaleReceipts (contracts/PreSaleOnChain.sol) In Commit
6a4d6dcece7b7120b2737137c591f3a88a84f7ba

Verification of contracts derived from AccessControl v4.4

Detailed Results for Function getRoleAdmin

Property Name Final Result Remarks

accesscontrol-getroleadmin-succeed-always True

accesscontrol-getroleadmin-change-state True

Detailed Results for Function hasRole

Property Name Final Result Remarks

accesscontrol-hasrole-succeed-always True

accesscontrol-hasrole-change-state True

Detailed Results for Function renounceRole

Property Name Final Result Remarks

accesscontrol-renouncerole-revert-not-sender True

accesscontrol-renouncerole-succeed-role-renouncing True

FORMAL VERIFICATION MOONSHOT MAGAX

Detailed Results for Function DEFAULT_ADMIN_ROLE

Property Name Final Result Remarks

accesscontrol-default-admin-role True

Detailed Results for Function grantRole

Property Name Final Result Remarks

accesscontrol-grantrole-correct-role-granting True

Detailed Results for Function revokeRole

Property Name Final Result Remarks

accesscontrol-revokerole-correct-role-revoking True

Detailed Results For Contract MAGAXPresaleReceipts (contracts/PreSaleOnChain.sol) In Commit
0x777fd819dc63418c648c1b9437d0f8d8211b3c08

Verification of contracts derived from AccessControl v4.4

Detailed Results for Function renounceRole

Property Name Final Result Remarks

accesscontrol-renouncerole-succeed-role-renouncing True

accesscontrol-renouncerole-revert-not-sender True

Detailed Results for Function revokeRole

Property Name Final Result Remarks

accesscontrol-revokerole-correct-role-revoking True

FORMAL VERIFICATION MOONSHOT MAGAX

Detailed Results for Function getRoleAdmin

Property Name Final Result Remarks

accesscontrol-getroleadmin-change-state True

accesscontrol-getroleadmin-succeed-always True

Detailed Results for Function grantRole

Property Name Final Result Remarks

accesscontrol-grantrole-correct-role-granting True

Detailed Results for Function hasRole

Property Name Final Result Remarks

accesscontrol-hasrole-change-state True

accesscontrol-hasrole-succeed-always True

Detailed Results for Function DEFAULT_ADMIN_ROLE

Property Name Final Result Remarks

accesscontrol-default-admin-role True

FORMAL VERIFICATION MOONSHOT MAGAX

APPENDIX MOONSHOT MAGAX

Finding Categories

Categories Description

Gas

Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can be

improved to make the code more understandable and maintainable.

Magic

Numbers

Magic Number findings refer to numeric literals that are expressed in the code in their raw format, but

should instead be declared as constants to improve readability and maintainability.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified. Each such contract was compiled into a

mathematical model that reflects all its possible behaviors with respect to the property. The model takes into account the

semantics of the Solidity instructions found in the contract. All verification results that we report are based on that model.

The following assumptions and simplifications apply to our model:

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled contract.

Formalism for property specifications

All properties are expressed in a behavioral interface specification language that CertiK has developed for Solidity, which

allows us to specify the behavior of each function in terms of the contract state and its parameters and return values, as well

as contract properties that are maintained by every observable state transition. Observable state transitions occur when the

contract’s external interface is invoked and the invocation does not revert, and when the contract’s Ether balance is changed

APPENDIX MOONSHOT MAGAX

by the EVM due to another contract’s “self-destruct” invocation. The specification language has the usual Boolean

connectives, as well as the operator \old (used to denote the state of a variable before a state transition), and several

types of specification clause:

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

requires [cond] - the condition cond , which refers to a function’s parameters, return values, and contract state

variables, must hold when a function is invoked in order for it to exhibit a specified behavior.

ensures [cond] - the condition cond , which refers to a function’s parameters, return values, and both \old and

current contract state variables, is guaranteed to hold when a function returns if the corresponding requires condition held

when it was invoked.

invariant [cond] - the condition cond , which refers only to contract state variables, is guaranteed to hold at every

observable contract state.

constraint [cond] - the condition cond , which refers to both \old and current contract state variables, is

guaranteed to hold at every observable contract state except for the initial state after construction (because there is no

previous state); constraints are used to restrict how contract state can change over time.

Description of the Analyzed AccessControl-v4.4 Properties

Properties related to function grantRole

accesscontrol-grantrole-correct-role-granting

After execution, grantRole must ensure the specified account has the granted role.

Specification:

ensures hasRole(role, account);

Properties related to function revokeRole

accesscontrol-revokerole-correct-role-revoking

After execution, revokeRole must ensure the specified account no longer has the revoked role.

Specification:

ensures !hasRole(role, account);

Properties related to function hasRole

accesscontrol-hasrole-change-state

The hasRole function must not change any state variables.

APPENDIX MOONSHOT MAGAX

Specification:

assignable \nothing;

accesscontrol-hasrole-succeed-always

The hasRole function must always succeed, assuming that its execution does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function DEFAULT_ADMIN_ROLE

accesscontrol-default-admin-role

The default admin role must be invariant, ensuring consistent access control management.

Specification:

invariant DEFAULT_ADMIN_ROLE() == 0x00;

Properties related to function renounceRole

accesscontrol-renouncerole-revert-not-sender

The renounceRole function must revert if the caller is not the same as account .

Specification:

reverts_when account != msg.sender;

accesscontrol-renouncerole-succeed-role-renouncing

After execution, renounceRole must ensure the caller no longer has the renounced role.

Specification:

ensures !hasRole(role, account);

Properties related to function getRoleAdmin

accesscontrol-getroleadmin-change-state

The getRoleAdmin function must not change any state variables.

APPENDIX MOONSHOT MAGAX

Specification:

assignable \nothing;

accesscontrol-getroleadmin-succeed-always

The getRoleAdmin function must always succeed, assuming that its execution does not run out of gas.

Specification:

reverts_only_when false;

APPENDIX MOONSHOT MAGAX

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER MOONSHOT MAGAX

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER MOONSHOT MAGAX

Elevating Your Entire Web3 Journey

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Moonshot Magax Security Assessment CertiK Assessed on Aug 12th, 2025 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

